Maszyny budowlane i serwis - można lepiej i taniej

Wskaźnik gotowości technicznej

stara koparkaByłoby idealnie gdyby maszyna po prostu się nigdy nie zepsuła, jednak takich maszyn nie ma.

Użytkownik ma wybór: droga maszyna, która psuje się rzadko i jest bardzo szybko przywracana do pracy przez dobry i drogi serwis albo tania maszyna psująca się często i czekająca na naprawę tygodniami.

Niestety, ten wybór jest obarczony dużym ryzykiem. Droższa maszyna też może ulec poważnej awarii. Z kolei niższy koszt posiadania tańszej maszyny może być z naddatkiem „zrównoważony” przez wyższy koszt jej eksploatacji.

Czas, w którym maszyna nie jest gotowa do pracy z przyczyn technicznych zależy od:

  • jakości maszyny
  • jakości serwisu
  • jakości eksploatacji, czyli od użytkownika.

Przestój maszyny, to czas jej wyłączenia z ruchu, gdy nie można było przewidzieć ani chwili wystąpienia problemu, ani czasu jego usuwania (na przykład awaria jakiegoś zespołu). Postój techniczny, to czas, gdy maszyna nie pracuje, ale wcześniej było wiadomo, kiedy to nastąpi i ile czasu będzie trwało (na przykład konieczność wykonania okresowej obsługi technicznej lub wymiany zużytych narzędzi roboczych).

Długość przestojów i postojów maszyn ma negatywny wpływ na sukces każdego projektu budowlanego. Dlatego byłoby dobrze uwzględnić w harmonogramie budowy przybliżoną liczbę godzin przestojów i postojów tych maszyn, które są potrzebne do realizacji kontraktu. Jeszcze lepiej byłoby to wiedzieć przed podjęciem decyzji o zakupie lub wynajęciu maszyny.

Miernikiem gotowości maszyny do pracy jest wskaźnik gotowości technicznej (WGT). To powinien być ważny element umowy serwisowej lub warunków gwarancji. Można oczywiście obliczać WGT nie angażując się w umowę serwisową, jednak przydatność takiej informacji jest ograniczona.

Nazwa wskaźnika jest nieco myląca, bo na czas przestojów mają wpływ nie tylko przyczyny techniczne. Na przykład zdarza się, że czas podejmowania decyzji o zleceniu naprawy konkretnemu serwisowi liczy się w dniach, podczas gdy czas naprawy, to kilkadziesiąt minut. Przyczyną może być na przykład poszukiwanie tańszych zamienników części zamiennych.

Nie ma standardowej definicji WGT.

Konstruktor maszyny określa go wzorem Ai=MTBF/(MTBF+MTTR)×100%, gdzie MTBF to średni czas między zdarzeniami wyłączającymi maszynę z ruchu, a MTTR to średni czas przywracania maszynie gotowości do pracy. Taka definicja mogłaby posłużyć nam do wyboru maszyny bardziej przydatnej na kontrakcie, jednak porzućmy wszelką nadzieję na otrzymanie obiektywnych danych od konkurujących producentów.

Lepszą – z punktu widzenia użytkownika maszyny – definicją jest iloraz liczby dni lub godzin, w których maszyna była gotowa do pracy (Tg) i liczby dni lub godzin, gdy zgodnie z planem pracy maszyna powinna być gotowa do jej wykonywania (Tpg). Można to opisać wzorem: WGT=Tg/Tpg×100%.

Czas gotowości do pracy (Tg)

Tg najlepiej zdefiniować jako czas planowanej gotowości Tpg minus czas wyłączenia maszyny z ruchu z przyczyn technicznych Tn.

Przyczyną techniczną nie jest brak operatora lub paliwa. Należy również jednoznacznie określić, czy przerwę na wykonanie planowej obsługi technicznej (OT) traktuje się jako czas Tn.

Czas gotowości można zwiększyć usuwając tymczasowo przyczynę przestoju, co zmniejsza Tn. Na przykład prowizoryczna naprawa może przywrócić możliwość jazdy ładowarki, ale tylko na niskich biegach, czyli z niższą prędkością. To jest dobra alternatywa dla użytkownika, gdy brakuje maszyny zastępczej. Jednakże ponowny przyjazd serwisu do wykonania naprawy oznacza postój. Takie częściowe usunięcie awarii powinno być uzgodnione z użytkownikiem.

Niektórzy użytkownicy uważają, że mogą uzyskać większy czas gotowości do pracy opóźniając wykonanie czynności okresowej obsługi technicznej (OT), lub niektórych czynności nie zamawiają wcale, bo na przykład OT-500 średniej ładowarki unieruchamia ją na 3 godziny, a OT-4000 aż na 15 godzin. Takie działanie można określić jako „zarzynanie” maszyny. W efekcie zwiększa się nieproporcjonalnie do oszczędności liczba godzin przestojów awaryjnych, o kosztach nie wspominając.

Czas planowanej gotowości do pracy (Tpg)

Najłatwiej jest ustalić planowaną gotowość do pracy maszyny pracującej w fabryce na trzy zmiany. Powinna być gotowa przez 365 dni×24 godziny=8760 godzin/rok. A jak określić planowaną gotowość, jeśli ładowarka służy do załadunku żwiru i piasku do mieszalnika betonowni? W lecie taka maszyna może pracować nawet na 3 zmiany, ale w zimie tylko wtedy, gdy temperatura umożliwia betonowanie. Albo jeśli koparka ładuje urobek na wozidła tylko przez kilkanaście godzin po odstrzale, a potem czeka na następną „okazję”?

Można uzgodnić, że do obliczenia WGT bierzemy liczbę godzin planowanych w harmonogramie zatrudnienia maszyny. Jeśli harmonogram prac jest określony dla każdego dnia, to dla użytkownika jest ważna również pora dnia, w której będzie potrzebował maszynę, a nie tylko liczba godzin planowanych w jakimś okresie. O każdej zmianie harmonogramu użytkownik powinien powiadomić serwis z odpowiednim wyprzedzeniem. Jego kierownik może wówczas przygotować się do zmienionego zapotrzebowania na mechaników. Jednak czy w tym czasie będzie miała miejsce awaria, to nikt nie wie. Jeśli użytkownik chce, aby mechanik cały czas czekał w pobliżu maszyny, to musi za to zapłacić. Oczywiście i tak maszyna może być wyłączona z ruchu na dłużej, na przykład z powodu konieczności sprowadzenia rzadkich części zamiennych.

Wady WGT

  • Trudne negocjowanie definicji Tg i Tpg.
  • Skomplikowany sposób monitorowania Tg i Tpg.
  • Żadna ze stron nie ma pewności, czy awaria będzie usunięta na przykład w czasie 24 godzin, czy może wyłączy maszynę na tydzień lub dłużej.
  • Ewentualne kary umowne prawie nigdy nie zrekompensują strat spowodowanych przestojem maszyny.

Podsumowując, problemy ze zdefiniowaniem WGT wynikają z różnych potrzeb poszczególnych użytkowników maszyn. Sprowadzają się do ustalenia:

  1. W jaki sposób monitorujemy czas gotowości?
    Czy jest to liczba godzin, gdy maszyna pracowała, czy liczba godzin, gdy mogła zostać użyta do pracy? W pierwszym przypadku WGT jest zaniżony z powodu przestojów i postojów innych, niż techniczne, w drugim – licznik motogodzin jest nieużyteczny.
    .
  2. W jaki sposób monitorujemy czas planowanej gotowości do pracy?
    Wątpliwości budzi zawsze użycie harmonogramu pracy maszyny sporządzonego przez użytkownika na dłuższy czas dla całej grupy maszyn. Jedynym racjonalnym rozwiązaniem jest zaufanie partnerów (użytkownika i serwisu), które pozwala na wpisanie do raportu pracy maszyny takiej liczby godzin przestoju, jaka w danym dniu została rzeczywiście stracona.
    .
  3. Jak często będziemy obliczać WGT?
    Żądanie użytkownika, aby serwis rozliczał się z WGT każdej maszyny co miesiąc wskazuje na jego chęć wykorzystania klauzuli umowy serwisowej o karach za niewykonanie WGT. Z kolei egoistyczny serwis woli rozliczać się z wykonania WGT dla całej floty maszyn raz w roku. Jeśli użytkownik i serwis odnoszą się do siebie po partnersku, to pamiętają, że WGT jest uśrednioną wartością, na którą obie strony mają wpływ.
    .
  4. Czy obliczamy WGT dla każdej maszyny osobno, czy dla grupy maszyn pracujących w ciągu technologicznym, czy też dla całej floty maszyn na budowie?
    .
  5. Czy postoje maszyn (planowa obsługa techniczna, wymiana zużytych narzędzi roboczych, zimowy remont rozściełacza asfaltu) są traktowane tak samo, jak przestoje, czy też taki Tn wyłączamy z obliczeń? Wyłączenie postojów z kalkulacji WGT powinno być zwykłą praktyką, gdy maszyna nie pracuje zbyt intensywnie i kierownik budowy może zaplanować przerwy w pracy. Jeśli serwis nie jest w stanie wówczas wykonać obsługi w uzgodnionym terminie, to mamy przestój a nie postój.
    .
  6. Czy czas przestoju obejmuje tylko działania serwisu, czy również opóźnienie spowodowane przez użytkownika?
    Monitorowanie czasu poszczególnych składników przestoju jest trudne, jednak możliwe, jeśli proces jest dobrze opisany i jego krytyczne etapy są widziane przez obie strony.
    Monitorowanie przez serwis czasu przestoju każdej maszyny jest jedną z najlepszych dróg do podniesienia jakości usług, więc może warto to robić nawet dla maszyn nie objętych umową o WGT?
    .
  7. Jaka jest rozsądna realna wartość WGT dla danych warunków pracy maszyny i zdolności serwisowej najbliższego oddziału serwisu?
    Na przykład rozliczany rocznie WGT=98% jest nierealną obietnicą dla maszyn pracujących w ciągu technologicznym fabryki płyt G-K. W ciągu planowanych 8760 godzin ładowarkę trzeba poddać okresowej obsłudze technicznej co najmniej 17 razy. Przy stanie licznika 500 trzeba wykonać OT-500, które trwa 3 godziny. Przy kolejnych wielokrotnościach 500 wykonujemy OT o odpowiednim zakresie, a ich pracochłonność jest różna, aż do 15 godzin dla OT-4000. Wykonanie czynności OT zajmie razem 100 godzin, co obniży WGT do 98,8%. Trudno uwierzyć, że w ciągu tego czasu maszyna nie będzie miała żadnej usterki lub nie będzie trzeba wymienić ogumienia lub narzędzi roboczych. Jeśli przeznaczyć na to kolejne 100 godzin, to WGT obniży się do 97,7%. A gdzie rezerwa na przestoje spowodowane awariami?
    Dla tej samej maszyny zatrudnionej na betonowni można uzgodnić WGT=98%, bo OT i dużo rzadszą wymianę narzędzi roboczych można wykonywać w czasie planowanych postojów organizacyjnych.

Jeśli wysokość WGT jest elementem umowy sprzedaży maszyny, warunków gwarancji lub umowy serwisowej, to parametry WGT trzeba zdefiniować przed rozpoczęciem współpracy. Wartość WGT powinna być negocjowana osobno dla każdego większego kontraktu.

Wpływ WGT na koszty użytkownika

Koszty maszyny obejmują koszty posiadania i koszty eksploatacji. Przestój lub postój nie wpływają na wysokość kosztów posiadania, bo amortyzację lub ratę leasingową trzeba co miesiąc zapisać w księgach rachunkowych po stronie kosztów bez względu na liczbę przepracowanych motogodzin. Tylko w przypadku najmu maszyny może być inaczej, ale to zależy od konkretnej umowy najmu.

Wysokość WGT ma natomiast wpływ na koszty eksploatacji. Jeśli maszyna nie pracuje, to nie ma kosztów paliwa, obsługi technicznej oraz zużycia ogumienia i narzędzi roboczych. Za to w rubryce koszty napraw trzeba będzie zarejestrować koszty dojazdu serwisu, części zamiennych i robocizny serwisanta.

Bardzo często użytkownicy nie zauważają kosztów i strat spowodowanych postojami i przestojami maszyny. Te ukryte koszty obejmują między innymi:

  • koszt płacy niewykorzystanego operatora
  • koszty maszyny zastępczej
  • koszt niewykorzystania pozostałych maszyn pracujących w ciągu technologicznym budowy
  • konieczność zmiany harmonogramu prac
  • ryzyko kary umownej za opóźnienie terminu zakończenia robót.

Dlatego tak trudno jest się porozumieć co do kar umownych, które dostawca maszyny lub serwis miałby zapłacić za nieosiągnięcie uzgodnionego WGT. Z jednej strony mamy przecież olbrzymie straty użytkownika. Z drugiej strony, użytkownik nie dzieli się z nikim zyskiem, który osiąga, jeśli maszyna pracuje niezawodnie, a serwis zmniejsza czas przestojów i postojów pracując w dni wolne od pracy lub sprowadzając brakujące części zamienne w trybie ekspresowym.

Z harmonogramu robót wynika potrzebna ilość maszyn. Jeśli oblicza się ją na podstawie ich wydajności oraz ilości pracy do wykonania, to trzeba uwzględnić przewidywaną wartość WGT. Im niższy ten wskaźnik, tym większa wymagana ilość maszyn.

Jednak to nie wszystko. Niski WGT oznacza jakąś liczbę przestojów i postojów, a każdy taki przypadek generuje dodatkowe koszty budowy. Ich wielkość można oszacować tylko wtedy, gdy się zna rzeczywiste koszty każdej godziny postoju i gdy się potrafi przewidzieć przybliżone koszty każdego przestoju, co jest znacznie trudniejsze.

Dodatkowym problemem jest wpływ niskiej gotowości jednej maszyny na zespół maszyn z nią współpracujących. Trochę upraszczając, jeśli jedna z maszyn ma WGT=95%, a druga WGT=85%, to dla zestawu tych współpracujących maszyn wartość WGT spada do 81% (0,95×0,85=0,81).

Awaryjność

Niezbędnym uzupełnieniem WGT jest więc wskaźnik awaryjności, czyli liczba wyłączeń maszyny z ruchu z przyczyn technicznych w jakimś okresie, oczywiście wyłączając awarie ewidentnie zawinione przez użytkownika. Producent na pewno zna statystyczne ryzyko awarii dla każdego modelu maszyny i jej głównych zespołów. Jeśli więc jakość eksploatacji i warunki pracy dwóch maszyn nie odbiegają od zakładanych przez jej producentów, to można by porównać przewidywane średnie liczby awarii tych konkurencyjnych maszyn. To by ułatwiło wybór odpowiedniej maszyny dla danego zastosowania.

Ten praktyczny sposób pomiaru niezawodności maszyny byłby nieocenioną pomocą dla kupującego, gdyby dało się namówić dostawcę do przyjęcia odpowiedzialności za uzgodnioną wartość wskaźnika awaryjności. Dostawca maszyny powinien zobowiązać się wtedy do dostarczenia w gwarantowanym czasie maszyny zastępczej lub zapłacić karę umowną. Tymczasem jednak porzućmy wszelką nadzieję na otrzymanie również takich, obiektywnych danych od konkurujących producentów.

Trzeba pamiętać, że awaryjność nowego modelu maszyny jest najwyższa w początkowym okresie po wprowadzeniu jej na rynek. Po kilkunastu miesiącach od dnia wyprodukowania pierwszych maszyn nowej serii jest dużo lepiej, bo producent usuwa błędy popełnione w czasie projektowania lub zmienia poddostawców zespołów. Może się jednak zdarzyć, że dokuczliwa usterka (na przykład wycieki z rozdzielacza hydraulicznego) jest lekceważona przez kilka lat, bo koszt zmian konstrukcyjnych jest wyższy, niż koszty napraw gwarancyjnych. A po gwarancji taka wada staje się źródłem zysku ze sprzedaży części zamiennych do niezbyt dobrze zaprojektowanego zespołu maszyny.

Podziel się swoimi doświadczeniami na ten temat - skomentuj wpis w formularzu poniżej. Aby wysłać komentarz musisz podać swój adres e-mail, który nie będzie upubliczniony.
Jeśli chcesz być informowany o nowych komentarzach do tego wpisu, to zaznacz pole pod formularzem.

Skomentuj

*

Proszę podać wynik: * Limit czasu ważności CAPTCHA wyczerpany. Załaduj nowy test CAPTCHA.